!> Author: Jabir Ali Ouassou !> Category: Foundation !> !> This module defines some functions that perform common calculus operations, !> including differentiating, integrating, and interpolating discretized data. module calculus_m use :: basic_m contains !--------------------------------------------------------------------------- ! Specific implementations of the `mean` interface !--------------------------------------------------------------------------- pure function mean_array_re(x) result(r) !! Calculates the mean value of a real-valued array. real(wp), dimension(:), intent(in) :: x !! Real-valued array real(wp) :: r !! Mean value <x> r = sum(x)/max(1, size(x)) end function pure function mean_array_cx(x) result(r) !! Calculates the mean value of a complex-valued array. complex(wp), dimension(:), intent(in) :: x !! Complex-valued array complex(wp) :: r !! Mean value <x> r = sum(x)/max(1, size(x)) end function !--------------------------------------------------------------------------- ! Specific implementations of the `differentiate` interface !--------------------------------------------------------------------------- pure function differentiate_array_re(x, y) result(r) !! Calculates the numerical derivative of an array y wrt. x using central !! differences at the interior points and forward/backward differences at !! the exterior points. All three approaches yield two-point approximations !! of the derivatives, thus the mesh spacing does not have to be uniform. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), dimension(size(x)) :: r !! Derivative dy/dx ! Differentiate using finite differences associate (n => size(x)) r(1) = (y(2) - y(1)) / (x(2) - x(1)) r(2:n-1) = (y(3:n) - y(1:n-2)) / (x(3:n) - x(1:n-2)) r(n) = (y(n) - y(n-1)) / (x(n) - x(n-1)) end associate end function pure function differentiate_array_cx(x, y) result(r) !! Complex version of differentiate_array_re. real(wp), dimension(:), intent(in) :: x !! Variable x complex(wp), dimension(size(x)), intent(in) :: y !! Function y(x) complex(wp), dimension(size(x)) :: r !! Derivative dy/dx ! Differentiate using finite differences associate (n => size(x)) r(1) = (y(2) - y(1)) / (x(2) - x(1)) r(2:n-1) = (y(3:n) - y(1:n-2)) / (x(3:n) - x(1:n-2)) r(n) = (y(n) - y(n-1)) / (x(n) - x(n-1)) end associate end function !--------------------------------------------------------------------------- ! Specific implementations of the `integrate` interface !--------------------------------------------------------------------------- pure function integrate_array_re(x, y) result(r) !! Calculates the integral of an array y wrt. x using the trapezoid !! method. The mesh spacing does not necessarily have to be uniform. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp) :: r !! Integral ∫y(x)·dx ! Integrate using the trapezoidal rule associate (n => size(x)) r = sum((y(2:n) + y(1:n-1)) * (x(2:n) - x(1:n-1)))/2 end associate end function pure function integrate_array_cx(x, y) result(r) !! Complex version of integrate_array_re. real(wp), dimension(:), intent(in) :: x !! Variable x complex(wp), dimension(size(x)), intent(in) :: y !! Function y(x) complex(wp) :: r !! Integral ∫y(x)·dx ! Integrate using the trapezoidal rule associate (n => size(x)) r = sum((y(2:n) + y(1:n-1)) * (x(2:n) - x(1:n-1)))/2 end associate end function function integrate_range_re(x, y, a, b) result(r) !! Constructs a piecewise hermitian cubic interpolation of an array y(x) !! from discrete numerical data, and then integrates the interpolation in !! the range (a, b). The mesh spacing does not have to be uniform. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), intent(in) :: a !! Left endpoint real(wp), intent(in) :: b !! Right endpoint real(wp) :: r !! Integral ∫y(x)·dx external :: dpchez real(wp), external :: dpchqa real(wp), dimension(size(x)) :: d integer :: err ! Create a PCHIP interpolation of the input data call dpchez(size(x), x, y, d, .false., 0, 0, err) ! Integrate the interpolation in the provided range r = dpchqa(size(x), x, y, d, a, b, err) end function function integrate_range_cx(x, y, a, b) result(r) !! Complex version of integrate_range_re. real(wp), dimension(:), intent(in) :: x !! Variable x complex(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), intent(in) :: a !! Left endpoint real(wp), intent(in) :: b !! Right endpoint complex(wp) :: r !! Integral ∫y(x)·dx ! Integrate the real and imaginary parts separately ! TODO: Replace this with two sequential integrations. r = cx(integrate_range_re(x, re(y), a, b), & integrate_range_re(x, im(y), a, b)) end function !--------------------------------------------------------------------------- ! Specific implementations of the `interpolate` interface !--------------------------------------------------------------------------- function interpolate_array_re(x, y, p) result(r) !! Constructs a piecewise hermitian cubic interpolation of an array y(x) !! based on discrete numerical data and evaluates the interpolation at p. !! Note that the mesh spacing does not necessarily have to be uniform. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), dimension(:), intent(in) :: p !! Point array p real(wp), dimension(size(p)) :: r !! Interpolation y(p) external :: dpchez external :: dpchfe real(wp), dimension(size(x)) :: d integer :: err ! Create a PCHIP interpolation of the input data call dpchez(size(x), x, y, d, .false., 0, 0, err) ! Extract the interpolated data at provided points call dpchfe(size(x), x, y, d, 1, .false., size(p), p, r, err) end function function interpolate_array_cx(x, y, p) result(r) !! Complex version of interpolate_array_re. real(wp), dimension(:), intent(in) :: x !! Variable x complex(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), dimension(:), intent(in) :: p !! Point array p complex(wp), dimension(size(p)) :: r !! Interpolation y(p) ! Interpolate the real and imaginary parts separately ! TODO: Replace this with two sequential interpolations. r = cx(interpolate_array_re(x, re(y), p), & interpolate_array_re(x, im(y), p)) end function function interpolate_point_re(x, y, p) result(r) !! Wrapper for interpolate_array_re that accepts scalar arguments. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), intent(in) :: p !! Single point p real(wp) :: r !! Interpolation y(p) real(wp), dimension(1) :: rs ! Perform the interpolation rs = interpolate_array_re(x, y, [p]) ! Extract the scalar result r = rs(1) end function function interpolate_point_cx(x, y, p) result(r) !! Complex version of interpolate_point_re. real(wp), dimension(:), intent(in) :: x !! Variable x complex(wp), dimension(size(x)), intent(in) :: y !! Function y(x) real(wp), intent(in) :: p !! Single point p complex(wp) :: r !! Interpolation y(p) complex(wp), dimension(1) :: rs ! Perform the interpolation ! TODO: Replace this with two sequential interpolations. rs = cx(interpolate_array_re(x, re(y), [p]), & interpolate_array_re(x, im(y), [p])) ! Extract the scalar result r = rs(1) end function pure function interpolate_point_matrix_re(x, y, p) result(r) !! Interpolates a matrix function using Catmull-Rom splines. real(wp), dimension(:), intent(in) :: x !! Variable x real(wp), dimension(:, :, :), intent(in) :: y !! Function y(x) real(wp), intent(in) :: p !! Single point p real(wp), dimension(size(y, 1), size(y, 2)) :: r !! Interpolation y(p) integer :: n, m real(wp) :: t ! Find the nearest known point y(x) m = size(x) n = floor(p*(m - 1) + 1); ! Perform the interpolation if (n <= 0) then ! Exterior: nearest extrapolation r = y(:, :, 1) else if (n >= m) then ! Exterior: nearest extrapolation r = y(:, :, m) else ! Interior: spline interpolation t = (p - x(max(n, 1)))/(x(min(n + 1, m)) - x(max(n, 1))) r = y(:, :, max(n - 1, 1)) * ( -0.5*t +1.0*t**2 -0.5*t**3) & + y(:, :, max(n - 0, 1)) * (+1.0 -2.5*t**2 +1.5*t**3) & + y(:, :, min(n + 1, m)) * ( +0.5*t +2.0*t**2 -1.5*t**3) & + y(:, :, min(n + 2, m)) * ( -0.5*t**2 +0.5*t**3) end if end function !--------------------------------------------------------------------------- ! Specific implementations of the `linspace` interface !--------------------------------------------------------------------------- pure subroutine linspace_array_re(array, first, last) !! Populates an array with elements from `first` to `last`, inclusive. real(wp), dimension(:), intent(out) :: array !! Output array to populate real(wp), intent(in) :: first !! Value of first element real(wp), intent(in) :: last !! Value of last element integer :: n do n = 1, size(array) array(n) = first + ((last - first)*(n - 1))/(size(array) - 1) end do end subroutine end module