ferromagnet Derived Type

type, public, extends(conductor) :: ferromagnet


Contents


Components

TypeVisibility AttributesNameInitial
real(kind=wp), public :: length =1.00_wp

Material length (L/ξ)

real(kind=wp), public :: thouless =1.00_wp

Thouless energy (ħD/L²)

real(kind=wp), public :: scattering =0.01_wp

Inelastic scattering (η/Δ₀)

logical, public :: transparent_a =.false.

Interface transparency (left)

logical, public :: transparent_b =.false.

Interface transparency (right)

logical, public :: phaselock =.false.

Lock the center-of-mass phase?

logical, public :: nonequilibrium =.false.

Equilibrium?

logical, public :: transverse =.false.

Transverse potential gradients?

real(kind=wp), public :: voltage =0.00_wp

Voltage (eV/Δ₀)

real(kind=wp), public :: temperature =0.01_wp

Temperature (T/Tc)

real(kind=wp), public :: spinvoltage =0.00_wp

Spin-voltage (eVs/Δ₀)

real(kind=wp), public :: spintemperature =0.00_wp

Spin-temperature (Ts/Tc)

real(kind=wp), public, dimension(1:3):: spinaxis =[0, 0, 1]

Spin quantization axis

real(kind=wp), public, allocatable:: energy(:)

Energy domain

real(kind=wp), public, allocatable:: location(:)

Position domain

type(propagator), public, allocatable:: propagator(:,:)

Propagator values

type(propagator), public, allocatable:: backup(:,:)

Propagator backups

real(kind=wp), public, allocatable:: density(:,:,:)

Spin-resolved density of states

real(kind=wp), public, allocatable:: supercurrent(:,:)

Charge, spin, heat, and spin-heat supercurrents

real(kind=wp), public, allocatable:: lossycurrent(:,:)

Charge, spin, heat, and spin-heat dissipative currents

real(kind=wp), public, allocatable:: accumulation(:,:)

Charge, spin, heat, and spin-heat accumulation

real(kind=wp), public, allocatable:: magnetization(:,:)

Magnetization due to exchange and Zeeman effects

complex(kind=wp), public, allocatable:: correlation(:)

Superconducting pair-correlations

integer, public :: order =1

Simulation priority of this material

class(material), public, pointer:: material_a=> null()

Material to the left (default: vacuum)

class(material), public, pointer:: material_b=> null()

Material to the right (default: vacuum)

integer, public :: iteration =0

Used to keep track of selfconsistent iteration cycles

logical, public :: selfconsistent =.true.

Whether to selfconsistently calculate the superconducting gap

logical, public :: boost =.true.

Whether to use convergence acceleration methods

integer, public :: scaling =128

Maximal mesh increase (range: 2^N, N>1)

integer, public :: method =4

Runge—Kutta order (range: 2, 4, 6)

integer, public :: control =2

Error control (1: defect, 2: global error, 3: 1 then 2, 4: 1 and 2)

real(kind=wp), public :: tolerance =1e-10_wp

Error tolerance (maximum defect or global error)

integer, public :: information =0

Debug information (range: [-1,2])

real(kind=wp), public :: difference =1e+10_wp

Difference between iterations

character(len=128), public :: type_string ='MATERIAL'

Name of this material

type(spinscattering), public, allocatable:: spinscattering

Spin-dependent scattering

type(spinorbit), public, allocatable:: spinorbit

Spin-orbit coupling

type(spinactive), public, allocatable:: spinactive_a

Spin-active interface (left)

type(spinactive), public, allocatable:: spinactive_b

Spin-active interface (right)

real(kind=wp), public, allocatable:: zeeman

How easy the material is magnetized by spin accumulation

real(kind=wp), public, allocatable:: exchange(:,:)

Magnetic exchange field as a function of position


Type-Bound Procedures

procedure, public :: update => material_update

Calculate propagators

  • private impure subroutine material_update(this, bootstrap)

    This subroutine updates the state of the material by solving the diffusion equations for the equilibrium propagators, the kinetic equations for the nonequilibrium propagators, and then calculating physical observables.

    Arguments

    Type IntentOptional AttributesName
    class(material), intent(inout) :: this

    Material that will be updated

    logical, intent(in), optional :: bootstrap

    Disable calculation of observables

procedure, public :: update_diffusion => diffusion_update

Calculate propagators (in equilibrium)

  • interface

    private subroutine diffusion_update(this)

    Arguments

    Type IntentOptional AttributesName
    class(material), intent(inout), target:: this

procedure, public :: update_kinetic => kinetic_update

Calculate propagators (nonequilibrium)

  • interface

    private subroutine kinetic_update(this)

    Arguments

    Type IntentOptional AttributesName
    class(material), intent(inout), target:: this

procedure, public :: save => material_save

Saves the state of the material

  • private impure subroutine material_save(this)

    Save a backup of the current material state.

    Arguments

    Type IntentOptional AttributesName
    class(material), intent(inout) :: this

procedure, public :: load => material_load

Loads the state of the material

  • public impure subroutine material_load(this)

    Load a backup of a previous material state.

    Arguments

    Type IntentOptional AttributesName
    class(material), intent(inout) :: this

procedure, public :: construct => conductor_construct

Constructs the object

  • private impure subroutine conductor_construct(this)

    Constructs a conductor object initialized to a superconducting state.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(inout) :: this

procedure, public :: initialize => conductor_initialize

Initializes propagators

  • private impure subroutine conductor_initialize(this)

    Define the default initializer.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(inout) :: this

procedure, public :: update_posthook => conductor_update_posthook

Code to execute after updates

  • private impure subroutine conductor_update_posthook(this)

    Code to execute after running the update method of a class(conductor) object. In particular, this function calculates supercurrents, dissipative currents, accumulations, and density of states, and stores the results in the object.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(inout) :: this

procedure, public :: diffusion_equation_a => conductor_diffusion_equation_a

Boundary condition (left)

  • private pure subroutine conductor_diffusion_equation_a(this, p, a, r, rt)

    Calculate residuals from the boundary conditions at the left interface.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(in) :: this
    type(propagator), intent(in) :: p
    type(propagator), intent(in) :: a
    type(spin), intent(inout) :: r
    type(spin), intent(inout) :: rt

procedure, public :: diffusion_equation_b => conductor_diffusion_equation_b

Boundary condition (right)

  • private pure subroutine conductor_diffusion_equation_b(this, p, b, r, rt)

    Calculate residuals from the boundary conditions at the right interface.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(in) :: this
    type(propagator), intent(in) :: p
    type(propagator), intent(in) :: b
    type(spin), intent(inout) :: r
    type(spin), intent(inout) :: rt

procedure, public :: kinetic_equation_a => conductor_kinetic_equation_a

Boundary condition (left)

  • private pure subroutine conductor_kinetic_equation_a(this, Gp, Ga, Cp, Ca)

    Calculate proportionality matrices for the boundary conditions at the left interface.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(in) :: this
    type(propagator), intent(in) :: Gp
    type(propagator), intent(in) :: Ga
    complex(kind=wp), intent(out), dimension(0:7,0:7):: Cp
    complex(kind=wp), intent(out), dimension(0:7,0:7):: Ca

procedure, public :: kinetic_equation_b => conductor_kinetic_equation_b

Boundary condition (right)

  • private pure subroutine conductor_kinetic_equation_b(this, Gp, Gb, Cp, Cb)

    Calculate proportionality matrices for the boundary conditions at the right interface.

    Arguments

    Type IntentOptional AttributesName
    class(conductor), intent(in) :: this
    type(propagator), intent(in) :: Gp
    type(propagator), intent(in) :: Gb
    complex(kind=wp), intent(out), dimension(0:7,0:7):: Cp
    complex(kind=wp), intent(out), dimension(0:7,0:7):: Cb

procedure, public :: update_prehook => ferromagnet_update_prehook

Code to execute before calculating the propagators

  • private impure subroutine ferromagnet_update_prehook(this)

    Updates the exchange field terms in the diffusion equation.

    Arguments

    Type IntentOptional AttributesName
    class(ferromagnet), intent(inout) :: this

procedure, public :: diffusion_equation => ferromagnet_diffusion_equation

Diffusion equation

  • private pure subroutine ferromagnet_diffusion_equation(this, p, e, z)

    Use the diffusion equation to calculate the second derivatives of the Riccati parameters at point z.

    Arguments

    Type IntentOptional AttributesName
    class(ferromagnet), intent(in) :: this
    type(propagator), intent(inout) :: p
    complex(kind=wp), intent(in) :: e
    real(kind=wp), intent(in) :: z

procedure, public :: kinetic_equation => ferromagnet_kinetic_equation

Kinetic equation

  • private pure subroutine ferromagnet_kinetic_equation(this, Gp, R, z)

    Calculate the self-energies in the kinetic equation.

    Arguments

    Type IntentOptional AttributesName
    class(ferromagnet), intent(in) :: this
    type(propagator), intent(in) :: Gp
    complex(kind=wp), intent(inout), dimension(0:7,0:7):: R
    real(kind=wp), intent(in) :: z

procedure, public :: conf => ferromagnet_conf

Configures material parameters

  • private impure subroutine ferromagnet_conf(this, key, val)

    Configure a material property based on a key-value pair.

    Arguments

    Type IntentOptional AttributesName
    class(ferromagnet), intent(inout) :: this
    character(len=*), intent(in) :: key
    character(len=*), intent(in) :: val